Recent progress in B_K and ε_K in lattice QCD

Weonjong Lee (SWME)

Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University

KIAS-NCTS Workshop, High 1 Resort, 02/11/2014

KIAS-NCTS 2014

Contents

- Project: 1998 Present
- Testing the Standard Model
 Indirect CP violation and B_K

B_K

- B_K on the lattice
- Data Analysis for B_K
- Continuum extrapolation of B_K

Conclusion and Future Plan

SWME Collaboration 1998 — Present

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 3 / 40

3

SWME Collaboration

- Seoul National University (SNU): Prof. Weonjong Lee Dr. Jon Bailey and Dr. Nigel Cundy (RA Prof.) 10+1 graduate students.
- Brookhaven National Laboratory (BNL): Dr. Chulwoo Jung Dr. Hyung-Jin Kim (Postdoc)
- Los Alamos National Laboratory (LANL): Dr. Boram Yoon (Postdoc)
- University of Washington, Seattle (UW): Prof. Stephen R. Sharpe.

Lattice Gauge Theory Research Center (SNU)

- Center Leader: Prof. Weonjong Lee.
- Research Assistant Prof.: Dr. Jon Bailey
- Research Assitant Prof.: Dr. Nigel Cundy
- 10+1 graduate students
- Secretary: Ms. Sora Park.
- more details on http://lgt.snu.ac.kr/.

Group Photo (2011)

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 6 / 40

Group Photo (2013)

CP Violation and B_K

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 8 / 40

3

Kaon Eigenstates and ε

• Flavor eigenstates, $K^0 = (\bar{s}d)$ and $\bar{K}^0 = (s\bar{d})$ mix via box diagrams.

Kaon Eigenstates and ε

• Flavor eigenstates, $K^0 = (\bar{s}d)$ and $\bar{K}^0 = (s\bar{d})$ mix via box diagrams.

• CP eigenstates $K_1(\text{even})$ and $K_2(\text{odd})$.

$$K_1 = \frac{1}{\sqrt{2}}(K^0 - \bar{K}^0) \qquad K_2 = \frac{1}{\sqrt{2}}(K^0 + \bar{K}^0)$$

Kaon Eigenstates and arepsilon

• Flavor eigenstates, $K^0=(\bar{s}d)$ and $\bar{K}^0=(s\bar{d})$ mix via box diagrams.

• CP eigenstates $K_1(\text{even})$ and $K_2(\text{odd})$.

$$K_1 = \frac{1}{\sqrt{2}}(K^0 - \bar{K}^0) \qquad K_2 = \frac{1}{\sqrt{2}}(K^0 + \bar{K}^0)$$

• Neutral Kaon eigenstates K_S and K_L .

$$K_S = \frac{1}{\sqrt{1+|\bar{\varepsilon}|^2}} (K_1 + \bar{\varepsilon}K_2) \qquad K_L = \frac{1}{\sqrt{1+|\bar{\varepsilon}|^2}} (K_2 + \bar{\varepsilon}K_1)$$

Weonjong Lee (SWME) (SNU)

Indirect CP violation and direct CP violation

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 10 / 40

- ∢ ⊢⊒ →

ε_K and \hat{B}_K

• Experiment: $\varepsilon_K = (2.228 \pm 0.011) \times 10^{-3} \times e^{i\phi_{\varepsilon}}, \quad \phi_{\varepsilon} = 43.52(5)^{\circ}.$

ε_K and \hat{B}_K

- Experiment: $\varepsilon_K = (2.228 \pm 0.011) \times 10^{-3} \times e^{i\phi_{\varepsilon}}, \quad \phi_{\varepsilon} = 43.52(5)^{\circ}.$
- Relation between ε and \hat{B}_K in standard model.

$$\begin{split} \varepsilon_{K} &= \exp(i\phi_{\varepsilon}) \sqrt{2} \sin(\phi_{\varepsilon}) C_{\varepsilon} \operatorname{Im} \lambda_{t} X \hat{B}_{K} + \xi + \xi_{LD} \\ X &= \operatorname{Re} \lambda_{c} [\eta_{1} S_{0}(x_{c}) - \eta_{3} S_{3}(x_{c}, x_{t})] - \operatorname{Re} \lambda_{t} \eta_{2} S_{0}(x_{t}) \\ \lambda_{i} &= V_{is}^{*} V_{id}, \qquad x_{i} = m_{i}^{2} / M_{W}^{2}, \qquad C_{\varepsilon} = \frac{G_{F}^{2} F_{K}^{2} m_{K} M_{W}^{2}}{6\sqrt{2}\pi^{2} \Delta M_{K}} \\ \xi &= \exp(i\phi_{\varepsilon}) \sin(\phi_{\varepsilon}) \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} \\ \xi_{LD} &= \operatorname{Long} \operatorname{Distance} \operatorname{Effect} \approx 2\% \end{split}$$

- 3

イロト 不得下 イヨト イヨト

ε_K and \hat{B}_K

Weonjon

Experiment: ε_K = (2.228 ± 0.011) × 10⁻³ × e^{iφ_ε}, φ_ε = 43.52(5)°.
Relation between ε and B_K in standard model.

$$\begin{split} \varepsilon_{K} &= \exp(i\phi_{\varepsilon}) \sqrt{2} \sin(\phi_{\varepsilon}) \ C_{\varepsilon} \ \mathrm{Im}\lambda_{t} \ X \ \hat{B}_{K} + \xi + \xi_{LD} \\ X &= \mathrm{Re}\lambda_{c}[\eta_{1}S_{0}(x_{c}) - \eta_{3}S_{3}(x_{c}, x_{t})] - \mathrm{Re}\lambda_{t}\eta_{2}S_{0}(x_{t}) \\ \lambda_{i} &= V_{is}^{*}V_{id}, \qquad x_{i} = m_{i}^{2}/M_{W}^{2}, \qquad C_{\varepsilon} = \frac{G_{F}^{2}F_{K}^{2}m_{K}M_{W}^{2}}{6\sqrt{2}\pi^{2}\Delta M_{K}} \\ \xi &= \exp(i\phi_{\varepsilon})\sin(\phi_{\varepsilon})\frac{\mathrm{Im}A_{0}}{\mathrm{Re}A_{0}} \\ \xi_{LD} &= \mathrm{Long} \ \mathrm{Distance} \ \mathrm{Effect} \approx 2\% \end{split}$$

• Definition of B_K in standard model.

$$B_{K} = \frac{\langle \bar{K}_{0} | [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] | K_{0} \rangle}{\frac{8}{3} \langle \bar{K}_{0} | \bar{s}\gamma_{\mu}\gamma_{5}d | 0 \rangle \langle 0 | \bar{s}\gamma_{\mu}\gamma_{5}d | K_{0} \rangle}$$

$$\hat{B}_{K} = C(\mu)B_{K}(\mu), \qquad C(\mu) = \alpha_{s}(\mu)^{-\frac{\gamma_{0}}{2b_{0}}} [1+\alpha_{s}(\mu)J_{3}]$$

$$(145)$$

$$K | \Delta S = 0.000$$

$$K | \Delta S = 0.000$$

B_K on the lattice

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 12 / 40

3

イロト イヨト イヨト イヨト

B_K definition in standard model

$$B_{K} = \frac{\langle \bar{K}_{0} | [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] | K_{0} \rangle}{\frac{8}{3} \langle \bar{K}_{0} | \bar{s}\gamma_{\mu}\gamma_{5}d | 0 \rangle \langle 0 | \bar{s}\gamma_{\mu}\gamma_{5}d | K_{0} \rangle}$$

$$\hat{B}_{K} = C(\mu)B_{K}(\mu),$$

$$C(\mu) = \alpha_{s}(\mu)^{-\frac{\gamma_{0}}{2b_{0}}} [1+\alpha_{s}(\mu)J_{3}]$$

 B_K

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 13 / 40

æ

イロト イヨト イヨト イヨト

What do we calculate on the lattice?

 B_K

Image: A math and A math and

Data Analysis for B_K

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 15 / 40

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Data for B_K with $am_d = am_s = 0.025 (20^3 \times 64)$

 B_K

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 16 / 40

$N_f = 2 + 1$ QCD: MILC coarse lattices

<i>a</i> (fm)	am_l/am_s	geometry	ens×meas	production
0.12	0.03/0.05	$20^3 \times 64$	564×9	done (SNU)
0.12	0.02/0.05	$20^3 \times 64$	486×9	done (SNU)
0.12	0.01/0.05	$20^3 \times 64$	671×9	done (SNU)
0.12	0.01/0.05	$28^3 \times 64$	274×8	done (BNL)
0.12	0.007/0.05	$20^3 \times 64$	651×10	done (SNU)
0.12	0.005/0.05	$24^3 \times 64$	509×9	done (SNU)

 B_K

$N_f = 2 + 1$ QCD: MILC fine lattices

<i>a</i> (fm)	am_l/am_s	geometry	ens×meas	production
0.09	0.0062/0.0310	$28^3 \times 96$	995 imes 9	done (SNU)
0.09	0.0031/0.0310	$40^3 \times 96$	959 imes 9	done (SNU)
0.09	0.0093/0.0310	$28^3 \times 96$	950 imes 9	done (SNU)
0.09	0.0124/0.0310	$28^3 \times 96$	1996×9	done (SNU)
0.09	0.00465/0.0310	$32^3 \times 96$	665×9	done (SNU)
0.09	0.0062/0.0186	$28^3 \times 96$	950 imes 9	done (KISTI)
0.09	0.0031/0.0186	$40^3 \times 96$	701×9	done (SNU)
0.09	0.0031/0.0031	$40^3 \times 96$	576 imes 9	done (KISTI)
0.09	0.00155/0.0310	$64^3 \times 96$	790 imes 9	done (KISTI)

 B_K

$N_f = 2 + 1$ QCD: MILC superfine/ultrafine lattice

a (fm)	am_l/am_s	geometry	ens×meas	production
0.06	0.0036/0.018	$48^{3} \times 144$	744×9	done (SNU)
0.06	0.0025/0.018	$56^3 \times 144$	799 imes 9	done (KISTI)
0.06	0.0072/0.018	$48^3 \times 144$	593 imes 9	done (KISTI)
0.06	0.0054/0.018	$48^3 \times 144$	617 imes 9	done (SNU)
0.06	0.0018/0.018	$64^3 \times 144$	826×7.4	(*KISTI)
0.06	0.0036/0.0108	$64^3 \times 144$	600×0.2	(*SNU)
0.045	0.0030/0.015	$64^3 \times 192$	747×1	(BNL)

イロト イ理ト イヨト イヨト 二日

Correlated Bayesian Fitting with SU(2) SChPT

 B_K

• MILC, $48^3 \times 144$, 744 cnfs, 9 meas at a = 0.06 fm.

Weonjong Lee (SWME) (SNU)

Sea quarks and valence quarks

 B_K

< 4 → <

Continuum extrapolation of B_K (1)

• Fitting functional form:

$$f_{1} = c_{1} + c_{2}(a\Lambda_{Q})^{2} + c_{3}\frac{L_{P}}{\Lambda_{X}^{2}} + c_{4}\frac{S_{P}}{\Lambda_{X}^{2}}$$

$$f_{2} = f_{1} + c_{5}(a\Lambda_{Q})^{2}\frac{L_{P}}{\Lambda_{X}^{2}} + c_{6}(a\Lambda_{Q})^{2}\frac{S_{P}}{\Lambda_{X}^{2}}$$

$$f_{3} = f_{1} + c_{5}\alpha_{s}^{2} + c_{6}(a\Lambda_{Q})^{2}\alpha_{s} + c_{7}(a\Lambda_{Q})^{4}$$

$$f_{4} = f_{2} + c_{7}\alpha_{s}^{2} + c_{8}(a\Lambda_{Q})^{2}\alpha_{s} + c_{9}(a\Lambda_{Q})^{4}$$

 B_K

• Bayesian constraint = prior information:

$$\Lambda_Q = 0.3 \text{ GeV}$$

 $\Lambda_X = 1.0 \text{ GeV}$
 $c_i = 0 \pm 2 \text{ for } i \ge 2$

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 22 / 40

3

Continuum extrapolation of B_K (2)

 B_K

• We exclude the MILC coarse ensembles in this fit.

Continuum extrapolation of B_K (3)

 B_K

• We exclude the MILC coarse ensembles in this fit.

Fitting quality: ΔB_K (f_1)

 B_K

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 25 / 40

< ロト < 同ト < ヨト < ヨト

Continuum extrapolation of B_K (4)

fit func	f_1	f_2	f_3	f_4
$\chi^2/{ m dof}$	1.48	1.47	1.47	1.47

 B_K

Table: Fitting quality of the Bayesian fits

KIAS-NCTS 2014

3

Error Budget of B_K [SU(2), 4X3Y, NNNLO]

 B_K

cause	error (%)	memo
statistics	0.64	see text
matching factor	4.4	$\Delta B_K^{(2)}$ (U1)
(discretization)		
$\left\{ am_{\ell} \text{ extrap} \right\}$	0.92	diff. of B1 and B4 fits
am_s extrap		
X-fits	0.09	varying Bayesian priors
Y-fits	2.0	diff. of linear and quad.
finite volume	0.38	diff. of $V=\infty$ and FV fit
r_1	0.28	r_1 error propagation (F1)
f_{π}	0.10	$132 \ \mathrm{MeV}$ vs. $124.2 \ \mathrm{MeV}$

- 32

<ロト < 団ト < 団ト < 団ト

Current Status of B_K (1)

• SWME: 2011 (PRL):

$$B_K(\text{RGI}) = \hat{B}_K = 0.727 \pm 0.004(\text{stat}) \pm 0.038(\text{sys})$$

 B_K

• SWME: 2014 (PRD)

 $B_K(\text{RGI}) = \hat{B}_K = 0.7379 \pm 0.0047(\text{stat}) \pm 0.0365(\text{sys})$

- The statistical error remains approximately the same.
- The systematic error decrease slightly.

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 28 / 40

イロト 不得下 イヨト イヨト

Current Status of ε_K

• SWME 2014: (in units of
$$1.0 imes 10^{-3}$$
)

$\varepsilon_K = 1.51 \pm 0.18$	for Exclusive V_{cb}
$\varepsilon_K = 1.91 \pm 0.21$	for Inclusive V_{cb}

 B_K

• Experiments:

$$\varepsilon_K = 2.228 \pm 0.011$$

- Hence, we observe $4.0/1.5 \sigma$ difference between the SM theory and experiments (exclusive/inclusive process).
- What does this mean? \longrightarrow Breakdown of SM ???

Error Budget of Exclusive ε_K

cause	error (%)	memo
V_{cb}	51.6	Exclusive (FNAL/MILC)
B_K	14.4	SWME
$ar\eta$	9.7	Wolfenstein
η_3	8.1	η_{ct}
m_c	6.9	Charm quark mass
÷	:	:

 B_K

3

<ロ> (日) (日) (日) (日) (日)

Current status of B_K on the lattice

 B_K

< (17) > < (17) > >

NPR (Current Focus)

 Non-perturbative Renormalization (Jangho Kim): Matching factor error: 4.4% → 2.0~3.0%

 B_K

- Exceptional Momentum: 2.0~3.0%
- Non-exceptional Momentum: 2.0~2.5%
- Basically, we want to trade the truncation error with the statistical error.

E 6 4 E

Two-loop Perturbation (Current Focus)

- Two-loop Perturbation: (Kwangwoo Kim) Matching factor error: 4.4% → 0.92%
- Automated Feynman Rule Generation.
- Automated Feynman Diagram Generation.
- Basically, we use non-zero quark masses to regulate the IR divergences.

 B_K

A 12 N A 12 N

Constraint for BSM models (Current Focus)

- Calculate the complete set of the BSM bag parameters: (95% done) $B_1 = B_K$, B_2 , B_3 , B_4 , B_5
- Model Independent Approach to BSM models (Kwangwoo Kim)

 B_K

• Model Dependent Approach to the SUSY models (Kwangwoo Kim) in collabotation with Prof. Pyungwon Ko, and Prof. Seungwon Baek.

Grand Challenges in the front

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 35 / 40

3

• We would like to determine B_K directly from the standard model with its systematic and statistical error $\leq 2\%$.

3

- We would like to determine B_K directly from the standard model with its systematic and statistical error $\leq 2\%$.
- **2** We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 (~ 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers.

イロト 不得下 イヨト イヨト

- We would like to determine B_K directly from the standard model with its systematic and statistical error $\leq 2\%$.
- **2** We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 (~ 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers.
- Basically, we need to accumulate at least 9 times more statistics using the SNU GPU cluster machine.
 ** statistical error < 1.0%

イロト 不得下 イヨト イヨト

- We would like to determine B_K directly from the standard model with its systematic and statistical error $\leq 2\%$.
- **2** We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 (~ 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers.
- Basically, we need to accumulate at least 9 times more statistics using the SNU GPU cluster machine.
 ** statistical error < 1.0%
- In addition, we need to obtain the matching factor using NPR (Jangho Kim) and using the two-loop perturbation theory (Kwangwoo Kim).
 * matching error < 1.0%

Weonjong Lee (SWME) (SNU)

() V_{cb} , we need to calculate the following semi-leptonic form factors:

$$B \to D\ell\nu \tag{1}$$
$$B \to D^*\ell\nu \tag{2}$$

3

() V_{cb} , we need to calculate the following semi-leptonic form factors:

$$B \to D\ell\nu \tag{1}$$
$$B \to D^*\ell\nu \tag{2}$$

We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang).

() V_{cb} , we need to calculate the following semi-leptonic form factors:

$$B \to D\ell\nu \tag{1}$$
$$B \to D^*\ell\nu \tag{2}$$

- We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang).
- We need to improve the vector and axial current in the same level as the OK action (Yong-Chull Jang, and Jon Bailey).

イロト 不得下 イヨト イヨト

() V_{cb} , we need to calculate the following semi-leptonic form factors:

$$B \to D\ell\nu \tag{1}$$
$$B \to D^*\ell\nu \tag{2}$$

- We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang).
- We need to improve the vector and axial current in the same level as the OK action (Yong-Chull Jang, and Jon Bailey).
- We plan to work on this issue using the OK heavy quark action in collaboration with FNAL and MILC.

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 37 / 40

• Long-Distance Effect $\xi_{LD} \approx 2\%$:

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 38 / 40

3

<ロ> (日) (日) (日) (日) (日)

- Long-Distance Effect $\xi_{LD} \approx 2\%$:
- 2 Here, the precision goal is only 10%.

3

- Long-Distance Effect $\xi_{LD} \approx 2\%$:
- e Here, the precision goal is only 10%.
- We need $N_f = 2 + 1 + 1$ calculation on the lattice. MILC provides HISQ ensembles with $N_f = 2 + 1 + 1$.

- Long-Distance Effect $\xi_{LD} \approx 2\%$:
- e Here, the precision goal is only 10%.
- We need $N_f = 2 + 1 + 1$ calculation on the lattice. MILC provides HISQ ensembles with $N_f = 2 + 1 + 1$.
- As a by-product, a substantial gain is that the charm quark mass dependence might be under control in this way. (Brod and Gorbahn)

イロト 不得下 イヨト イヨト

Ultimate Goals

• As a result, we hope to discover a breakdown of the standard model in the level of 5σ or higher precision.

Ultimate Goals

- As a result, we hope to discover a breakdown of the standard model in the level of 5σ or higher precision.
- As a result, we would like to provide a crucial clue to the physics beyond the standard model.

Ultimate Goals

- As a result, we hope to discover a breakdown of the standard model in the level of 5σ or higher precision.
- As a result, we would like to provide a crucial clue to the physics beyond the standard model.
- As a result, we would like to guide the whole particle physics community into a new world beyond the standard model.

・ロト ・ 同ト ・ ヨト ・ ヨト

Thank God for your help !!!

Weonjong Lee (SWME) (SNU)

KIAS-NCTS 2014

KIAS-NCTS 2014 40 / 40

3